

Research Methodology Into Mass Timber Systems: • Cross laminated timber • Glue laminated timber • Nail laminated timber • Dowel laminated timber

Wojciech Plowas

COCIS Research Into Mass Timber Systems – UK Cross laminated timber

Outputs:

□ The mechanical properties are comparable to the commercially made product

- UK Sitka spruce can be processed to the requirements necessary for CLT
- □ UK CLT from spruce have been manufactured at commercial CLT facility in Germany (W.u.J Derix GmbH)
- □ Small scale demonstration of UK CLT

Fig 1: UK CLT – Pilot manufacture

Fig 2: UK CLT – Design and analysis

Fig 3: UK CLT – Pilot project

UK species investigated: Sitka Spruce, Scots Pine, Douglas Fir, Western Hemlock, Lawson Cypress, Larch

COCIS Research Into Mass Timber Systems – UK Glue laminated timber

Outputs: Approx. 90% of GLT in the UK is imported from Scandinavia, Austria or Germany

- UK GLT is a viable alternative to commercial products in terms of structural performance
- □ With appropriate optimisation, UK GLT could be utilised for domestic construction
- □ Its possible to fabricate GL20c-GL24c using a home-grown resource

Fig 4: UK GLT – Pilot manufacture

Fig 5: UK GLT – Bending tests

Fig 6: UK GLT – Shear tests

UK species investigated: Sitka Spruce, Scots Pine, Douglas Fir and Larch

COCIS Research Into Mass Timber Systems – UK Dowel laminated timber

- **Outputs:** DLT is a product that can be developed within the UK using the local resource
 - UK grown timber could be used to manufacture DLT for floors and walls
 - Focus of the DLT application should be within the domestic housing market
 - Optimum DLT specification: 30mm thick laminations (Larch) + 20mm beech dowels

Fig 7: DLT – Pilot manufacture

Fig 8: DLT – Bending tests

Fig 9: DLT – Pilot project

UK species investigated (lamellae): <u>Sitka Spruce, Scots Pine and Larch</u>

UK species investigated (dowels): Birch, Scots Pine, Beech, Ash, Sycamore and Oak

COCIS Research Into Mass Timber Systems – UK Nail laminated timber

Outputs: UK NLT exhibit higher racking strength and a similar stiffness to timber frame panels.

- Tests showed that the addition of 9mm OSB leads to lower overall deflections
- □ Aluminium nailing, would lead to greater costs due to about 10% wastage on the nails
- Tests showed that aluminium nails lead to greater deflections at serviceability limits

Fig 10: NLT – Pilot manufacture

Fig 11: NLT – Point load tests

Fig 12: NLT – Fabrication drawing

UK species investigated (lamellae): <u>Sitka Spruce</u>

Research Methodology Into Mass Timber Systems

Objectives: D To compile existing information and demonstrate the uses of Mass Timber in the UK

To develop consistent research methodology into Mass Timber systems

To identify gaps in knowledge and propose future work needed for commercialisation

Research Methodology into Mass Timber Systems:

Step 1 – Mass Timber Product

Description

- Applications
- Manufacturing process

Step 2 - Preliminary investigation

• Market review

- Resource availability
- Lamella characterisation
- Lamella lay-up and geometry
- Adhesive, nails or dowels

Step 3 - Compliance criteria

- Mechanical resistance
- Bond strength
- Durability
- Resistance and reaction to fire
- Release of dangerous substances

Step 4 – Pilot Manufacture

- Panels manufactured
- Production environment
- Manufacture appraisal

Step 8: Future work

- Further development
- Identifying barriers
- Product certification
- Promotion

Step 7 - Pilot Project

- Trial product on a pilot project
- Full process appraisal

Step 6 - Design and Analysis

- Applying test results to building scenarios
- Detailing to BS
- Performance modelling
- Identifying best end use

Step 5 - Primary investigation

- Properties derived from calculations
- Tests on full scale panels
- Verification of the results

Research Methodology Into Mass Timber Systems

<u>Step 1 – Mass Timber Product</u>

- Description
- Applications
- Manufacturing process

Edinburgh Napier

UNIVERSITY

Step 1 - Product review & applications

Post and Beam

Glue laminated timber:

Cross laminated timber:

Nail laminated timber & Dowel laminated timber:

Flor: Wall: Roof:

Featured trusses

Curved structural shape

Structural applicability of Mass Timber Systems:

. . .

SOMETIMESUSED

NOT USED BUT POSSIBLE

NOT APPLICABLE

		LOW RISE 1-4 storeys							MID RISE 5-10 storeys						
		frame	wall	roof	floor	core	partition	frame	wall	roof	floor	core	partition		
GLUED SOLID TIMBER	CLT	•	•••	•••	•••	•••	•••		•••	•••	•••	••	••		
	GLT	•••		••	••						••				
NON-GLUED SOLID TIMBER	DLT		•••	••	••	•••	•		•	•	••	•			
	NLT		•••	• •	••	•••	•		•	•	• •	•			

٠

Research Methodology Into Mass Timber Systems

Step 2 - Preliminary investigation

- Market review
- Potential manufacturers
- Resource availability
- Lamella characterisation
- Lamella lay-up and geometry
- Adhesive, nails or dowels

Edinburgh Napier

Step 2 - Preliminary investigation

🗖 Lamella d

Resource availability

Market review

Lamella characterisation

□ Lamella layup and geometry

Adhesive characteristics

Nail/dowel characteristics

Potential mass timber volume share by sector:

Mass Timber Systems - approximate minimum start-up capital investment requirements:

CapEx (Approx.)	Mass Timber System	Rational
High>€5M	Crosslaminated timber (CLT)	 Stringent <u>product approval</u> and quality assurance requirements Production line requires high level of <u>quality control</u> Normally <u>integrated</u> with pre-lamination process of <u>grading and finger-jointing</u> Normally <u>integrated</u> with post-lamination process of <u>CNC machining</u>.
Med > €2M	Nail laminated timber (NLT) & Dowel laminated timber (DLT)	 Facilities are generally <u>low to medium capacity</u>, given that the product application is restricted to <u>'niche' low rise</u>, one-offhousing or low-rise commercial and public sector building. Normally <u>integrated</u> with post-lamination process of <u>CNC machining</u>.
Low <€2M	Glue laminated timber(GLT)	• Facility can be set up for low volume application with graded timber supplied as required

Market review

Step 2 - Preliminary investigation (cont.)

□ Lamella characterisation

Adhesive characteristics

Resource availability

□ Lamella layup and geometry

Nail/dowel characteristics

Grading trades yield for strength class (single grade/reject):

Species		Grading trades yield for class (single grade/reject)											
	C14	C16	C18	C20	C22	C24	C27						
British	100%	100%	90%	73%	55%	26%	9%						
spruce ¹			Remaining timber grade to C16										
UK-grown	100%	100%	100%	100%	90%	65%	≈35%						
larch ²	\nearrow				Remaining	Remaining timber grade to C14							

¹Sitka spruce and Norway spruce combined from UK and Ireland

² Hybrid, Japanese and European larch

Research Methodology Into Mass Timber Systems

Step 3 - Compliance criteria

- Mechanical resistance
- Bond strength
- Durability
- Resistance and reaction to fire
- Release of dangerous substances

Edinburgh Napier

Bonding strength

Step 3 - Compliance Criteria & assessment methods

Mechanical resistance

Durability

Dimensional stability

□ <u>Reaction to fire</u>

Resistance to fire

Compliance criteria & assessment methods for <u>CLT</u>:

Based on: <u>BS EN 16351:2015</u> '*Timber structures — Cross laminated timber — Requirements*

CLT

Characteristic	Symbol	Assessment method	Test Standard	No. of	Notes/Compliance Criteria						
	1. Mechanical pro	perties perpendicular to the	he plane of cross laminate	dtimber							
1.1 Modulus of Elasticity 1.2 Bending Strength	E _{0,mean} f _{m,k}	Bending test	BS EN 16351:2015 & BS EN 408:2010	7-15	No. of test depend on the width of specimens. Test setup as per BS EN 16351:2015 cl E31						
1.3 (Rolling) Shear stiffness	G _{9090, mean}	Sheartest	BS EN 16351:2015 &/or	7-15	Number of test depend on the width of specimens						
1.5 Compressi 1.6 Tensile Stre (NOTE: all mechanical properties of CLT can also be derived from calculations)											
2.3 Shear stiffness	G _{090,mean}	Bending test	BS EN 16351:2015 & BS EN 408:2010	20	Test setup as per BS EN 16351:2015 cl. F4.4						
2.4 Shear strength	F _{v,090,k}	Shear test	BS EN 16351:2015 & BS EN 408:2010	20	Test setup as per BS EN 16351:2015 cl. F4.2						
2.5 Compressive Strength	f _{c,0,k}	Compressiontest	BS EN 408:2010	30	-						
2.6 Tensile Strength	f _{t,0,k}	Tension test	BS EN 408:2010	30	-						
	3.	Bonding strength of cros	slaminated timber 💶 🗕								
3.1 Bonding Strength of glue Delam (%)		Delamination test	BS EN 16351:2015 BS EN 16351:2015	10	Declared as Pass Delam or Pass Shear						
	4	Resistance to fire of cros	s laminated timber	10	Chida						
4.1 Geometrical data	L, t, w	Measurement	BS EN 16351:2015 & EN 14081-1	3	Charring rate (of layers), declared						
4.2 Density of timber	ρ	Assess, check or test	BS EN 16351:2015 & EN 14081-1	3	based on species used and strength class						
4.3 Species	-	Check	BS EN 16351:2015	-							
	5	. Reaction to fire of cross	laminated timber								
5.1 Reaction to Fire	-	Check	EN 14081-1	-	Declared based on fire class of						
5.1 Reaction to The	-	or Fire test	EN 13501-1	-	lay ers or tests						
	6. D	imensional stability of cro	oss laminated timber								
6.1 Moisture deformation factor or species	k _{cor}	Check	BS EN 16351:2015	-	Check that species listed in BS EN 16351 are used						
	7.	Release / content of dang	gerous substances								
7.1 Formaldehydeemission	E1, E2	Check or test	BS EN 16351:2015	-	Declared as formaldehyde release class (E1 or E2)						
	8. Durab	ility of bonding strength &	against biological attack								
8.1 Species	-	Check	BS EN 16351:2015	-	-						
8.2 Adhesiv e characteristic	-	Check or test	BS EN 16351:2015		Usually provided by						
8.4 Preservative treatment	-	Check or test	BS EN 16351:2015		adhesiv e/preservative manufacture						

Durability

Resistance to fire

Bonding strength

UNIVERSITY

Dimensional stability

Reaction to fire

Compliance criteria & assessment methods for <u>NLT</u>:

Edinburgh Napier

Based on: <u>EAD 130011-00-0304</u> 'Prefabricated wood slab element made out of mechanically jointed squaresawn timber members to be used as a structural elements in buildings'

NLT/DLT

Characteristic	Symbol	Assessment method	Test Standard	No. of tests	Notes/Compliance Criteria							
•	1.	Mechanical properties	perpendicular to the p	laneof nail la	minated timber							
1.1 Modulus of Elasticity 1.2 Bending Strength	E _{0,mean} f _{m,k}	Bending test	BS EN 408:2010	30	Bending tests in accordance w EN 408 cl. 9, 10 and 19	rith						
1.3 Compressiv 1.4 Tensile Stree 0.4 Monte of C	TE: a	ll mechan	ical prop	erties	of NLT can	15,16 I. 13						
also be derived from calculations)												
2.4 Shear strength	F _{v,090,k}	Oncarteot	DO EN 100.2010			. 15						
2.5 Compressive Strength	f _{c,0,k}	Compressiontest		30	Testing according to EN 408 cl.	15,16						
2.6 Tensile Strength	f _{t,0,k}	Tension test		30	Testing according to EN 408 c	. 13						
1.3 (Racking) Shear stiffness	R France	Racking test	BS EN 594:2011	30	Shear tests may be performed following th EN 594	ne principles of						
3. Dimensional stability of nail laminated timber												
3.1 Tolerances of dimensions	L, w, d	Check/Measurement	EN 4000 4	-	Dimensional changes due to varying MC	shall not have						
3.2 Stability of dimensions	MC (%)	Check/Measurement	EN 1309-1	-	inadmissible effects on performance and stability of							
		4. Dur	ability / In-service env	vironment								
4.1 Species	-	Check	EN 350-2	-	Service class to EC5 shall be g	iven						
		5. Reacti	on to fire of nail lami	nated timber								
5 1 Production to Fire	-	Check	EN 14081-1	-	Declared based on fire class of lower	o or tooto						
5.1 Reaction to File	-	or Fire test	EN 13501-1	-	Declared based on the class of layer	S OF LESIS						
		6. Resista	nce to fire of nail lam	inated timber								
4.1 Geometrical data	L, w, d	Measurement	EN 14091 1 and/or	-	Charring rate (of layers), dealered based a							
4.2 Density of timber	ρ	Assess, check or test	EN 14001-1 anu/01 EN 13501-2	-	and strength class	n species used						
4.3 Species	-	Check	ERTIOUUTE	-	and strongth slass							
	1		7. Other requirement	ts								
7.1 Water v apour permeability	μ	Test	EN ISO 10456	-	-							
7.2 Airborne sound insulation	R	Test	EN ISO 10140-2	-	-							
7.3 Impact sound insulation	L _{n, w} (C _l)	Test	EN ISO 10140-3	-	-							
7.4 Thermal conductivity	λ	Check	EN ISO 10456	-	-							
7.5 Air permeability	Class A-C	Test	EN 12114	-	-							
7.6 Thermal inertia	Cp	Check	EN ISO 10456	-	-							
7.3 Impact sound insulation	L _{n, w} (C _I)	Test	EN ISO 10140-3	-	-							
7.4 Thermal conductivity	λ	Check	EN ISO 10456	-	-							
7.5 Air permeability	Class A-C	Test	EN 12114	-	-							
7.6 Thermal inertia	Cp	Check	EN ISO 10456	-	-							

Research Methodology Into Mass Timber Systems

<u>Step 4 – Pilot Manufacture</u>

- Panels manufactured
- Production environment
- Manufacture appraisal

Edinburgh Napier

UNIVERSI[®]

4. Pilot Manufacture – UK CLT

Specification of manufactured panels

Production environment assessment

□ <u>Manufacture appraisal</u>

Pilot manufacture of UK CLT:

<u>UK Timber species:</u> Sitka Spruce, Scots pine, Douglas fir, Western Hemlock, Lawson Cypress

<u>Manufactured by:</u> W.u.J. Derix GmbH (Germany), Norbuild

<u>Press types:</u> Hydraulic and Vacuum

<u>Adhesives used:</u> *Purbond HB S709, Melanine Urea Formaldehyde (MUF) 1255/7555*

CLT - UK Sitka	Spruce (Derix)	
► B.	Cross laminated timber el	ement
	Wood species:	UK Sitka Spruce
	Number of layers:	3 ≤ n ≤ 5
	Layer thickness and orientation (3ply):	30I-40c-30I
	Layer thickness and orientation (5ply):	40I-30c-30I-30c-40I
	Strength class of layers:	100% C16
	Panel width, w:	2.9 to 3.0 m
A ////////////////////////////////////	Panel length, L:	10.5 to 13.5 m
	Panel depth, h:	100 to 170 mm
	Type of adhesive:	(MUF) 1255/7555
or line or	Bonded surface:	Face
	Large finger joints:	No
	Manufactured by:	W.u.J. Derix GmbH
B	Controlled environment:	Yes
Vidit	Year of manufacture:	2014
"n	Press type:	Hydraulic press
V V	Number of panels manufactured:	2
7	Boards	
Section A-A: $ \stackrel{b_1}{\longleftrightarrow} $	Strength graded to EN 14081:	Yes
	Strength class:	C16
	Surface:	Planed
	Thickness, t _l	30 to 40 mm
	Width, b _l	100 to 170 mm
h	Ratio width to thickness	≥ 4:1
Section B-B:	Finger joints	Yes
	Moisture content to EN 13183-2:	11 - 15%
¥	Mean Densiy	415 kg/m ³

4. Pilot Manufacture – UK GLT

Specification of manufactured panels

Production environment assessment

Manufacture appraisal

Pilot manufacture of UK GLT:

<u>UK Timber species:</u> Sitka Spruce, Scots pine, Douglas fir, Larch

<u>Manufactured by:</u> Norbuild, Buckland Timber, Wood Knowledge Wales

<u>Press types:</u> Hydraulic/mechanical

<u>Adhesives used:</u> Purbond HB S309, Melanine Urea Formaldehyde (MUF) BASF Kauramin

4. Pilot Manufacture

- Specification of manufactured panels
- Production environment assessment

Manufacture appraisal

Pilot manufacture of UK NLT:

UK Timber species: Sitka Spruce

Manufactured by: MAKAR

<u>Fixings used:</u> 3.1 mm Ring shank nails (ITW)

Step 5 - Primary investigation

- Properties derived from calculations
- Tests on full scale panels
- Verification of the results

5. Primary investigation

Properties derived from calculations

- Tests on full scale panels/beams
- Analysis and verification of the results

- Test programmes of home-grown CLT carried out by Edinburgh Napier University and Graz University (bottom)
- Example of home grown CLT panel mechanical properties and other specifications derived tests and calculations presented in <u>ETA format (right)</u>

Test type	Test standard	Property ass	essed	No. of samples tested	Tested by			
	Sitka	Spruce CLT (Deriv	ĸ)					
Bending perpendicular to CLT	BS EN 16351:2015 BS EN 408:2010	Bending strength Bending	f _{m,k}	10	Croz University of			
		stiffness Bending	E _{0, mean}		Technology,			
Bending in plane of	BS EN 16351:2015	strength	f _{m,k}	10	Institute of Timber			
CLT	BS EN 408:2010	Bending stiffness	E _{0, mean}	-	Engineering and Wood			
Rolling hear	BS EN 16351:2015	Rolling shear strength	f _{R,k}	24	Technology, Lignum Test			
Shear	BS EN 14080:2013	Shear strength	f _{v,k}	10	Centre			
Delamination	BS EN 16351:2015	Delamination	Delam _{tot}	20				
Varying species C	LT (Sitka Spruce, Scots P	ine, Douglas Fir, W	estern Hen	nlock, Lawson C	ypress, Larch)			
Bending perpendicular	BS EN 16351:2015	Bending strength	f _{m,k}	1				
to CLT	BS EN 408:2010	Bending stiffness	E _{0, mean}	-	Edinburgh Napier			
Bending in plane of	BS EN 16351:2015	Bending strength	f _{m,k}	4	Institute for			
CLT	BS EN 408:2010	Bending stiffness	E _{0, mean}	4	Construction			
Glue line shear	BS EN 16351:2015	Shear strength	fv	5				

CLT - UK Sitka Spruce (Derix)											
	Cross lami	nated timber e	lement								
	Wood species:		UK Sitka Spruce								
	Number of layers:		3 ≤ n ≤ 5								
	Layer thickness and orientat	ion (3ply):	30I-40c-30I								
	Layer thickness and orientat	ion (5ply):	40I-30c-30I-30c-40								
	Panel width, w:		2.9 to 3.0 m								
	Panel length, L		10.5 to 13.5 m								
	Panel depth, h:		100 to 170 mm								
	Type of adhesive:		(MUF) 1255/7555								
	Bonded surface:		Face								
B	Large finger joints:		No								
ITT	Manufactured by:		W.u.J. Derix GmbH								
11/1/11/17	Reaction to fire:		D-s2, d0								
	Durability against biologica	Durability against biological attack: Service classes:									
	Service classes:										
		Boards									
	Strength graded to EN 14081	Strength graded to EN 14081: Strength class:									
11:11	Strength class:										
	Surface:	Strength class: Surface:									
11/1 1	Thickness, t		30 to 40 mm								
- Stills	Width, bi	Width, bi									
	Ratio width to thickness	Ratio width to thickness									
- A	Finger joints		Yes								
1.4	Moisture content to EN 1318	3-2:	11-15%								
	Mean Densiy		415 kg/m ³								
/	Mech	anical resistan	ce								
	1. Perpendicular to cross	laminated timb	er								
	Modulus of elasticity	E o,mean	8332 N/mm ²								
←	Shear modulus	Gmean	532 N/mm ²								
	Rolling shear modulus	G R,mean	84.4 N/mm ²								
	Bending strength	f m,mean	25.8 N/mm ²								
	Tensile strength	f 1,90,4	0.4 N/mm ²								
	Compression strength	f c,90,x	2.2 N/mm ²								
b	Shear strength	$\int v_{\nu,k}$	1.94 N/mm ²								
← →	Rolling shear strength	fre	2.09 N/mm ²								
	2. In-plane of cross lamin	ated timber									
	Modulus of elasticity	E 0,mean	9495 N/mm ²								
	Shear modulus	Gmean	500 N/mm ²								
	Bending strength	f _{m,k}	21.75 N/mm ²								
	Tensile strength	frox	13.35 N/mm ²								
	Compression strength	fc.a.k	19 N/mm ²								
	Shear strength	Shear strength f _{v,k}									
	Other r	Other mechanical activ									
	Creep and duration of load	to EN 1995-1-1									
	Bond integrity	Passed									
	Values obtaine	d from tests									
		Values based on BS EN 338									

5. Primary investigation

Properties derived from calculations

- Tests on full scale panels/beams
- Analysis and verification of the results

- Test programmes of home-grown GLT carried out by Edinburgh Napier University (bottom)
- Example of home grown GLT mechanical properties and other specifications derived tests and calculations presented in <u>ETA format (right)</u>

Test type	Test standard	No. of samples tested								
Larch GLT (I	homogenous)									
Glue line bond test	BS EN 14080:2013	61								
Bending test of finger joints	BS EN 14080:2013 & BS EN 408:2010	21								
GLT Bending test	BS EN 14080:2013 & BS EN 408:2010	8								
GLT Tension test (perpendicular to grain)	BS EN 408:2010	9								
GLT Compression test (perpendicular to the grain)	BS EN 408:2010	16								
Sitka Spruce GLT (combined)										
Glue line bond test	Bespoke	6								
GLT Bending test	BS EN 14080:2013 & BS EN 408:2010	4								
Douglas Fir G	LT (combined)									
Glue line bond test	Bespoke	5								
GLT Bending test	BS EN 14080:2013 & BS EN 408:2010	4								
Scots Pine G	LT (combined)									
Glue line bond test	Bespoke	5								
GLT Bending test	BS EN 14080:2013 & BS EN 408:2010	4								

Values based on estimated GLT strength class

5. Primary investigation

Properties derived from calculations

- Tests on full scale panels/beams
- Analysis and verification of the results

- Test programmes of home-grown NLT carried out by Edinburgh Napier University (bottom)
- Example of home grown NLT mechanical properties and other specifications derived tests and calculations presented in <u>ETA format (right)</u>

Test type	Test standard	Property asse	essed	No. of samples tested	Tested by
Bending perpendicular to NLT	BS FN	Bending strength	f _{m,k}		Ediaburgh
	408:2010	Bending stiffness	E _{0, m} ean	30	Napier University,
Dealtha tasta	BS EN	Racking strength	F _{max}	0	Institute for Sustainable
Racking tests	594:2011	Racking stiffness	R	0	construction

Research Methodology Into Mass Timber Systems

- Applying test results to building scenarios
- Detailing to BS
- Performance modelling
- Identifying best end use

<u>&</u>

Step 7 - Pilot Project

- Trial product on a pilot project
- Full process appraisal

Edinburgh Napie

- Applying test results to building scenarios
- Detailing in accordance with BS
- Structural performance modelling

- □ Identifying best end use
- □ Trial Mass Timber product on a pilot project
- Full process appraisal

Demonstration Project: Hypothetical construction using CLT from home grown Sitka Spruce - Glasgow Housing Association

CLT structural design

- CLT panels formed walls and floor structure
- Fully compliant with The Building Regulations

(Design by: Smith and Wallwork engineers)

CLT thermal modelling

Make-up of the components with the UK CLT <u>complies with current thermal requirements</u> as stated in standard 6.1 "Domestic Energy" of the Scottish Building Regulations

(Analysis by: Scottish Energy Centre)

CLT acoustic detailing

Assessment of performance specifications for separating floors, separating walls, internal walls and general detailing issues associated with these partitions.

(Analysis by: Building Performance Centre)

- Applying test results to building scenarios
- Detailing in accordance with BS
- □ Structural performance modelling

- □ Identifying best end use
- Trial Mass Timber product on a pilot project
- □ Full process appraisal

UK CLT vs European CLT: (design criteria: strength, shear, deflection, vibration)

Educational Building - Long span

Design Example 1 - Summary															
Span	7.5	m		European CLT - 300 L8s - 2			2	UK CLT - 300 L8s - 2				UK CLT - 320 L8s - 2			
Dead Load	1	kN/m²		Normal Conditions		Fire Cor	Fire Conditions Normal Conditions		onditions	Fire Conditions		Normal Conditions		Fire Conditions	
Live Load	3	kN/m²	Strength	26.1%	PASS	14.6	PASS	23.1%	PASS	12.8	PASS	21.2%	PASS	12	PASS
Service class	1		Shear	15.8%	PASS	7.1	PASS	10.6%	PASS	4.3	PASS	9.9%	PASS	4.1	PASS
Shortest term action duration	Medium		Deflections	64.3%	PASS			75.6%	PASS			66.2%	PASS		
			Vibrations (Min 8 Hz)	7.89	CHECK			7.44	FAIL			7.87	CHECK		

Educational Building - Short span

Design Example 2 - Summary														
Span	3.6	m		European CLT - 120 L3s			UK CLT - 120 L3s				UK CLT - 140 L5s			
Dead Load	2.1	kN/m²		Normal Conditions		Fire Conditions	Normal Conditions		Fire Conditions		Normal Conditions		Fire Conditions	
Live Load	1.5	kN/m²	Strength	26.9%	PASS		24.4%	PASS	68.4%	PASS	19.0%	PASS	20.6%	PASS
Service class	1		Shear	15.3%	PASS		9.6%	PASS	5.5%	PASS	8.3%	PASS	4.4%	PASS
Shortest term action duration	Medium		Deflections	82.7%	PASS		97.5%	PASS			65.5%	PASS		
			Vibrations (Min 8 Hz)	8.30	PASS		7.69	FAIL			9.34	PASS		

Residential Building - Medium span

Design Example 3 - Summary															
Span	5	m		European CLT - 160 L5s			UK CLT - 160 L5s				UK CLT - 180 L5s				
Dead Load	1	kN/m ²		Normal Co	onditions	Fire Cor	ditions	Normal Co	onditions	Fire Co	nditions	Normal C	onditions	Fire Cor	nditions
Live Load	1.5	kN/m²	Strength	25.0%	PASS	17.5%	PASS	22.2%	PASS	15.3%	PASS	19.1%	PASS	13.2%	PASS
Service class	1		Shear	11.6%	PASS	5.8%	PASS	7.7%	PASS	3.5%	PASS	6.8%	PASS	3.1%	PASS
Shortest term action duration	Medium		Deflections	70.9%	PASS			84.8%	PASS			66.1%	PASS		
			Vibrations (Min 8 Hz)	8.11	PASS			7.53	FAIL			8.46	PASS		

For a UK CLT to compete with a European CLT, panel thickness must be increased by at least one standard product size (limiting property – Vibration)

- Applying test results to building scenarios
- Detailing in accordance with BS
- Structural performance modelling

- □ Identifying best end use
- □ Trial Mass Timber product on a pilot project
- Full process appraisal

Pilot Project: DLT from home grown Larch - Munro Harvesting House at Deer Park, Knockmuir Brea, Avoch (North Scotland)

UK Timber species used: Larch

DLT Manufactured by: MAKAR

Building element: Suspended immediate floor

DLT panel specification:

- 140mm deep by 300mm wide and 4190mm long
- Joined together with 20mm diameter Beech dowels at 300mm centres

Total DLT floor area: 20 m²

- Applying test results to building scenarios
- Detailing in accordance with BS
- Structural performance modelling

- □ Identifying best end use
- □ Trial Mass Timber product on a pilot project
- Full process appraisal

Pilot Project: DLT from home grown Larch - Munro Harvesting House at Deer Park, Knockmuir Brea, Avoch (North Scotland)

DLT Infra-red thermography analysis

- Infra-red thermograms revealed consistency in the junction between the floor and the wall cassette
- Internally there aren't any low surface temperatures that would reveal thermal bridging or heat loss

(Testing by: Scottish Energy Centre)

DLT Air permeability

The air permeability tests performed revealed an average result of 5.25 m3/m2.h@50Pa – in compliance with The Building Regulations

(Testing by: Scottish Energy Centre)

DLT structural detailing

- In platform frame construction the DLT floor can simply bear directly onto the head of a panel
- The timber walling can be built directly from it
- A rim beam can be used on the outer edge of the panel to form a cavity that can be filled with insulation.

(Consultations: SER engineers)

7. Summary and Future Work

Further product development

Support with product certification

Identifying and overcoming barriers

Promotion

Estimated status of research carried out on home grown Mass Timber systems:

	UK NLT	UK CLT	UK GLT	UK DLT
1. Product review	100%	100%	100%	100%
2. Compliance criteria	100%	100%	100%	100%
3. Preliminary Investigation	50%	50%	54%	65%
4. Pilot manufacture	50%	58%	42%	75%
5. Primary Investigation	25%	58%	33%	42%
6. Design and Analysis	0%	63%	0%	56%
7. Pilot project	38%	63%	0%	50%

Recommendations for future work include:

- Update on market review and potential manufacturers
- Development of calculation methods for deriving the properties based on the layup and properties of the boards
- Finding optimum lamella layup/geometry, best suited for the UK market
- Further showcasing the feasibility of utilising home grown Mass Timber systems

"Mass Timber commercialisation in the UK"

'The project aims to fully understand the feasibility and therefore potential costs, benefits and constraints of a mass timber manufacturing facility within Scotland'

Work Package 1: Review

- Parametric analysis of mass timber products
- Design and analysis utilising research data
- Development of technical details

Work Package 2: Market assessment

- Costs comparison
- Demand for mass timber products

Work Package 3: Manufacturing feasibility

- Potential mass timber manufacturers
- Suppliers and equipment needed
- Manufacturing scenarios for Scotland

Work Package 4: Manufacturing feasibility

- Identification of most realistic form(s) of mass timber product for fabrication
- Identification of a pilot project to best demonstrate home-grown mass timber production

Work Package 5: Mass Timber Alliance

- Final reporting and creation of outreach literature: 'Mass Timber from UK/Scotland resource - Manufacture and use of solid timber products and systems in Scotland'

 Formation of industry advisory group, who will potentially facilitate supply chain integration with view to full commercialisation of the project findings

Thank you for your attention.

Questions and discussion welcome.

